Related Topics:

RENO Flowchart Functions

Using Time Units in RENO

RENO Predefined Functions

The following functions are the predefined functions available for RENO flowcharts. Note that many of these functions are also available in analysis workbooks.

The general mathematical functions are presented first followed by probability functions and the random variable functions.

General Mathematical Functions
abs degrees if ppmt
acos delta int pv
acosh derivative integral pvi
asin erf ipmt quotient
asinh erfc ln radians
atan even log rand
atan2 exp log10 randunique
atanh expondist lognormdist round
besseli exponfr lognormfr rounddown
besselj exponinv lognorminv roundup
besselk exponmean lognormmean sin
bessely exponrel lognormrel sinh
betadist fact mod sqrt
betainv factdouble mround standardize
binomdist false negbinomdist tan
bisection fdist normdist tanh
ceiling finv normfr true
chidist fisher norminv trunc
chiinv fisherinv normrel weibulldist
combin floor normsdist weibullfr
confidence fv normsinv weibullinv
cos fvi odd weibullmean
cosh gammadist permut weibullrel
critbinom gammainv pi  
cumipmt gammaln pmt  
cumprinc hypgeomdist poisson  
Probability Functions

A probability function returns the probability that a random variable will occur. In other words, it returns the value of F(x) given x, where F(x) is the cumulative density function of a distribution. The returned probability will always be between 0 and 1. Some examples:

pr_beta pr_g_gamma pr_loglogistic pr_students_t
pr_binomial pr_gamma pr_lognormal pr_triangular
pr_chi_squared pr_gumbel pr_negative_binomial pr_uniform
pr_exponential pr_inverse_gaussian pr_normal pr_uniform_discrete
pr_f pr_logistic pr_poisson pr_weibull

 

Random Variables Functions

 A random variable function is the opposite of a probability function. It returns the value of a random variable based on a given probability distribution. In other words, it returns a value x, given F(x). Some examples:

What's Changed? In previous versions of the software, the probability and random variable functions were a type of global object known as a "definition." The second example given above is similar to using a random variable definition in the previous version.

rv_beta rv_g_gamma rv_loglogistic rv_students_t
rv_binomial rv_gamma rv_lognormal rv_triangular
rv_chi_squared rv_gumbel rv_negative_binomial rv_uniform
rv_exponential rv_inverse_gaussian rv_normal rv_uniform_discrete
rv_f rv_logistic rv_poisson rv_weibull

 

© 1992-2015. ReliaSoft Corporation. ALL RIGHTS RESERVED.