Related Topics:

Taguchi Orthogonal Array (OA) Factorial Designs

Taguchi OA Designs: Example

The data set used in this example is available in the example database installed with the software (called "doe9_examples.rsr9"). To access this database file, choose File > Help, click Open Examples Folder, then browse for the file in the DOE sub-folder.

The name of the example project is "Factorial - Taguchi OA Design Example."

Taguchi orthogonal array (OA) designs are often used in design experiments with factors that include more than two levels. Taguchi OA can be thought of as a general fractional factorial design.

Consider an experiment to study the effect of four three-level factors on a fine gold wire bonding process in an IC chip-package.* Taguchi OA L27 (3^13) is applied to identify the critical parameters in the wire bonding process. The response is the ball size. The smaller the ball size, the better the process.

For this example, the four factors and their associated levels are:

Name Level 1 Level 2 Level 3
Force 5 10 15
Power 40 50 60
Time 15 20 25
Temperature 155 160 165

Design the Experiment

The experimenters use DOE++ to create a Taguchi OA design. Then they perform the experiment according to the design and enter the response values for further analysis. The design matrix and the response data are given in the "Taguchi OA L27(3^13)" folio. The following steps describe how to create this folio on your own.

These column assignments will be used to generate a design that does not alias any of the two-way interactions you entered in the Specify Interaction Terms window with any main effects.

Analysis and Results - Part 1

The data set for this example is given in the "Taguchi OA L27 (3^13)" folio of the example project. After you enter the data from the example folio, you can perform the analysis by doing the following:

Note: To minimize the effect of unknown nuisance factors, the run order is randomly generated when you create the design in DOE++. Therefore, if you followed these steps to create your own folio, the order of runs on the Data tab may be different from that of the folio in the example file. This can lead to different results. To ensure that you get the very same results described next, show the Standard Order column in your folio, then click a cell in that column and choose Sheet > Sheet Actions > Sort > Sort Ascending. This will make the order of runs in your folio the same as that of the example file. Then copy the response data from the example file and paste it into the Data tab of your folio.

Click the Detailed Summary link on the control panel and select to the view the ANOVA Table.

From this table, you can see that effects A, B, C are significant. To simply the analysis, the next step is to recreate the model using only the significant terms.

Analysis and Results - Part 2

The results for the reduced model are given in the "Reduced Model" folio of the example project. The following steps describe how to create this folio on your own and then use the results to find the factor settings that provide the smallest deviation in height.

Conclusions

You can see that the first run in the standard order (8th run in the run order) is at the best combination of settings. The settings for this particular run on the Data tab is shown to be A = 5, B = 40, C = 15. Under these settings, the expected ball size is lowest.

Note that the best factor settings in this case are limited to those settings actually used in the experiment. This limitation can be avoided using response surface methodology, which may allow you to find the optimal settings for the manufacturing process.

 

* T. Hou, S. Chen, T. Lin and K. Huang, "An integrated system for setting the optimal parameters in IC chip-package wire bonding process," Int. J Adv Manuf Technology, 2006, 30, 247-253.

** G. Taguchi, S. Chowdhury and Y. Wu, Taguchi's Quality Handbook, Hoboken, New Jersey, Wiley, 2004.

 

© 1992-2015. ReliaSoft Corporation. ALL RIGHTS RESERVED.